Fast Algorithm for Affinity Propagation

نویسندگان

  • Yasuhiro Fujiwara
  • Go Irie
  • Tomoe Kitahara
چکیده

Affinity Propagation is a state-of-the-art clustering method recently proposed by Frey and Dueck. It has been successfully applied to broad areas of computer science research because it has much better clustering performance than traditional clustering methods such as k-means. In order to obtain high quality sets of clusters, the original Affinity Propagation algorithm iteratively exchanges realvalued messages between all pairs of data points until convergence. However, this algorithm does not scale for large datasets because it requires quadratic CPU time in the number of data points to compute the messages. This paper proposes an efficient Affinity Propagation algorithm that guarantees the same clustering result as the original algorithm after convergence. The heart of our approach is (1) to prune unnecessary message exchanges in the iterations and (2) to compute the convergence values of prunedmessages after the iterations to determine clusters. Experimental evaluations on several different datasets demonstrate the effectiveness of our algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Knowledge-Based System for Diagnosis of Breast Cancer by a combination of the Affinity Propagation and Firefly Algorithms

Breast cancer has become a widespread disease around the world in young women. Expert systems, developed by data mining techniques, are valuable tools in diagnosis of breast cancer and can help physicians for decision making process. This paper presents a new hybrid data mining approach to classify two groups of breast cancer patients (malignant and benign). The proposed approach, AP-AMBFA, con...

متن کامل

Image Segmentation Based on Fast Normalized Cut

In this paper, we propose a fast image segmentation method based on normalized cut. This method apply simple linear iterative clustering super-pixel algorithm to obtain super-pixel regions, and then use affinity propagation clustering to extract the representative pixels in each super-pixel regions, Finally, we apply normalized cut to obtain segmentation results. At the end of the paper, Numeri...

متن کامل

Fast Fusion Moves for Multi-model Estimation

We develop a fast, effective algorithm for minimizing a well-known objective function for robust multi-model estimation. Our work introduces a combinatorial step belonging to a family of powerful move-making methods like α-expansion and fusion. We also show that our subproblem can be quickly transformed into a comparatively small instance of minimum-weighted vertex-cover. In practice, these ver...

متن کامل

A parallel attribute reduction algorithm based on Affinity Propagation clustering

As information technology is developing rapidly, massive and high dimensional data sets have appeared in abundance. The existing attribute reduction methods are encountering bottleneck problem of timeliness and spatiality. AP(Affinity Propagation) is an efficient and fast clustering algorithm for large dataset compared with the existing clustering algorithms. This paper discusses attribute clus...

متن کامل

An Efficient and Fast Density Conscious Subspace Clustering using Affinity Propagation

Subspace clustering is an eminent task to detect the clusters in subspaces. Density-based approaches assume the high-density region in the subspace as a cluster, but it creates density divergence problem. The proposed work improves the performance of Density Conscious subspace clustering (DENCOS) by utilizing the Affinity Propagation (AP) algorithm to detect the local densities for a dataset. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011